Search results for "POWER CORRECTIONS"

showing 2 items of 2 documents

Matching factorization theorems with an inverse-error weighting

2018

We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated w…

Drell-Yan processNuclear and High Energy PhysicsFOS: Physical sciencesInversegauge boson: hadroproduction01 natural sciencestransverse momentum: momentum spectrumCross section (physics)High Energy Physics - Phenomenology (hep-ph)FactorizationfactorizationSimple (abstract algebra)0103 physical sciencesquantum chromodynamicsApplied mathematics010306 general physicshadron hadron: interactionBosonQuantum chromodynamicsPhysics010308 nuclear & particles physicsmatchingdeep-inelastic processesfactorization: collinearHigh Energy Physics::Phenomenologyfactorization; Quantum Chromodynamics; matching; power corrections; deep-inelastic processesDrell–Yan processlcsh:QC1-999WeightingHigh Energy Physics - Phenomenologykinematics[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]transverse momentum: factorization[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]power correctionslcsh:Physics
researchProduct

Measurement of Event Shape and Inclusive Distributions at $\sqrt{s} =$ 130 and 136 GeV

1997

Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine $\alpha_s$ from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: % %\alpha_s…

High energyParticle physicsZ(0) RESONANCEPhysics and Astronomy (miscellaneous)Electron–positron annihilationHADRONIC Z-DECAYS; E+E-ANNIHILATION; ALPHA-S; POWER CORRECTIONS; Z(0) RESONANCE; MONTE-CARLO; QCD MODELS; ENERGY; FRAGMENTATION; PREDICTIONSHadronPREDICTIONSThrust01 natural sciences7. Clean energyPartícules (Física nuclear)Nuclear physicsENERGYFragmentation (mass spectrometry)POWER CORRECTIONSMONTE-CARLO0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ALPHA-S010306 general physicsDetectors de radiacióDELPHIPhysicsQuantum chromodynamics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyE+E-ANNIHILATIONLARGE ELECTRON POSITRON COLLIDERCharged particleHADRONIC Z-DECAYSLarge Electron–Positron ColliderPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIQCD MODELSPARTICLE PHYSICSHigh Energy Physics::ExperimentFRAGMENTATIONParticle Physics - Experiment
researchProduct